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Abstract
Objective: To explore the association of the methylation status of MGMT and hMLH1 with chromosome damage induced 
by vinyl chloride monomer (VCM). Materials and Methods: Methylation of MGMT and hMLH1 was measured in 101 
VCM-exposed workers by methylation-specific PCR. Chromosome damage in peripheral blood lymphocytes was mea-
sured by the cytokinesis-block micronucleus assay. The subjects were divided into chromosome damaged and non-damaged 
groups based on the normal reference value of micronuclei frequencies determined for two control groups. Results: MGMT 
promoter methylation was detectable in 5 out of 49 chromosome damaged subjects, but not in the chromosome non-dam-
aged subjects; there was a significant difference in MGMT methylation between the two groups (p < 0.05). Conclusions: We 
detected aberrant promoter methylation of MGMT in a small number of chromosome damaged VCM-exposed workers, but 
not in the chromosome non-damaged subjects. This preliminary observation warrants further investigation in a larger study.
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inactivation of tumor suppressor genes in human can-
cers. Several investigators have reported that CpG islands 
on the promoters of the MGMT and hMLH1 genes are 
hypermethylated in several malignancies and aberrant 
hypermethylation represses the expression of MGMT 
and hMLH1 [17–20]. A high frequency of p16 hypermethy-
lationin was observed in vinyl chloride (VC)-associated 
hepatocellular carcinomas (HCC) [21]. Aberrant methyla-
tion of tumor suppressor genes might also act in the early 
stages of the multistep process of carcinogenesis [22]. 
Based on the information above, we hypothesized that 
epigenetic silencing of MGMT and hMLH1, by promoter 
hypermethylation, might be involved in VCM-exposure-
induced chromosome damage which is the early stage 
in the process of liver angiosarcoma. In the present study, 
we attempted to identify the MGMT and hMLH1 pro-
moter methylation status in genomic DNA isolated from 
peripheral blood lymphocytes from workers exposed 
to VCM using a methylation-specific polymerase chain 
reaction (MS-PCR) and to analyze the correlation be-
tween MGMT and hMLH1 gene promoter methylation 
and chromosome damage induced by VCM exposure. 

MATERIALS AND METHODS

Study population
Workers employed in a VCM polymerization plant 
in China were studied. Prior to the study, written informed 
consent had been obtained from each subject and a stan-
dardized questionnaire had been used to obtain personal 
information, smoking and alcohol habits, medication and 
occupational history. The subjects exposed to VCM for 
longer than one year were selected if the following criteria 
were met: detailed questionnaires had been completed, 
the CBMN test results and a blood sample had been pro-
vided and the MSP analysis for the MGMT and hMLH1 
genes was completed successfully. A total of 101 workers 
met these criteria. Individuals who smoked once a day for 

INTRODUCTION

Vinyl chloride monomer (CH2 = CHCl, VCM), a chemi-
cal widely used in the manufacture of polyvinyl chloride 
(PVC) plastics, causes angiosarcoma and hepatocellular 
cancer (HCC) [1–3] and is a known human and rodent 
carcinogen [4]. In the liver, VCM is primarily metabo-
lized by the cytochrome P450 system to chloroethylene 
oxide (CEO) [5], which can either undergo hydrolysis 
or rearrange rapidly to the more stable chloroacetalde-
hyde (CAA). Acting as a bifunctional agent, CAA can react 
with nucleic acid bases to produce the four exocyclic DNA 
adducts: 3,N(4)-ethenocytosine; 1,N(6)-ethenoadenine; 
N(2)-3-ethenoguanine, and 1,N(2)-ethenoguanine [6]. 
These adducts are pro-mutagenic and genotoxic and, 
additionally, may give rise to chromosomal aberrations, 
micronuclei (MN), sister chromatid exchange, and DNA 
strand breaks which are observed in the lymphocytes 
of individuals occupationally exposed to VCM [7–9]. 
VCM-induced DNA damage is subject to repair, which is 
partly executed by O6-methylguanine-DNA methyltrans-
ferase (MGMT) and mismatch repair (MMR). MGMT is 
a DNA repair enzyme that plays an important role in the de-
fense against the carcinogenic and cytotoxic effects of alkyl-
ating agents in cellular DNA [10]. The MGMT expression 
was frequently lost in a variety of human tumors and was 
found to be a significant prognostic factor [11]. Since the loss 
of the MGMT expression was not commonly observed due 
to a genetic change, it has been suggested that other causes, 
such as epigenetic changes, might be involved [12]. MMR is 
an essential system by which cells correct errors in DNA rep-
lication during proliferation to maintain the fidelity of the 
genome [13,14]. One of the MMR genes, hMLH1, has been 
demonstrated to play a pivotal role in DNA MMR [15]. 
Additionally, it has been shown that Mgmt–/– Mlh1–/– (double 
knockout) mice treated with alkylating agents exhibited high 
susceptibility to carcinomas [16].
It has been proposed that aberrant DNA methylation of 
CpG islands in the promoter region is correlated with the 
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DNA modification (bisulfite treatment)
DNA modification with sodium bisulfite causes unmethy-
lated cytosine bases to convert to uracil, while methyla-
ted cytosine is resistant and remains unchanged. After 
treatment, subsequent PCR using primers specific for 
either methylated or modified unmethylated DNA was 
performed [26]. Briefly, 1 μg of DNA was denatured by 
NaOH and modified by sodium bisulfite. DNA samples 
were then purified using Wizard DNA purification resin 
(Promega, Madison, WI, USA), treated again with NaOH, 
precipitated with ethanol, and resuspended in water. 

Methylation-specific PCR (MSP)
The methylation status of MGMT and hMLH1 genes 
in the samples was determined by MSP [26]. Two sets 
of primers (Table 1) had been previously described 
[13,17]. For PCR amplifications, 2 μl of bisulfite-modi-
fied DNA was added to PCR mixture containing 1× buffer 
with 2 mmol/l MgCl2, 500 nmol/l each primer, 0.2 mmol/l 
dNTPs, 1 U Hot Start Taq polymerase. The samples were 
amplified for MGMT under the following conditions: 95°C 
for 8 min, followed by 35 cycles of 95°C for 30 s, 59°C 
(unmethylated reaction) and 65°C (methylated reaction) 
for 30 s, 72°C for 30 s and the final extension at 72°C 
for 10 min. The annealing temperature and time for 
hMLH1 were 60°C (unmethylated reaction) and 45 s. 
Normal lymphocytes treated with CpG methyltransfer-
ase (M.SssI) (New England BioLabs, USA) before the 
bisulfite treatment were used as a positive control for the 
methylated alleles of MGMT. Also, control experiments 
without DNA were performed for each set of PCRs. 
Each PCR product (5 μl) was loaded directly onto 3% 
agarose gels stained with ethidium bromide and visualized 
under UV illumination.

Statistical analysis
Statistical analysis was performed using SPSS 
(ver. 15.0, SPSS Inc., Chicago, IL) and SAS (ver. 9.1) 

over 6 months were defined as smokers, and individuals 
who consumed one or more alcohol drinks a week for 
over 6 months were considered as drinkers.
In addition, two groups were selected as controls: 
group 1 consisted of 41 male and 56 female workers from 
the same factory and another VCM polymerization plant 
who were not exposed to VCM or other known toxicants 
occupationally; group 2 comprised 23 male and 21 female 
healthy residents living in the same city. A normal reference 
value of the MN frequency was determined for the controls 
on which the grouping of the VCM-exposed subjects was 
based, such that the MN frequency above 3‰ in the VCM-
exposed workers is an indicator of chromosome damage 
and below or equal to 3‰ is considered normal [23]. 

Assessment of the VCM exposure
The level of VCM was measured for different work sites 
of the plant using gas chromatography. Since the VCM 
plant had kept VCM air concentration data for different 
work sites from the beginning of its establishment, we were 
able to estimate the cumulative exposure dose of each work-
er with a relatively high level of precision. The cumulative 
exposure dose was calculated according to an equation as 
described previously [7]. The VCM-exposed subjects were 
then divided into high-exposure and low-exposure groups 
according to the median dose (26 642.28 mg).

Cytokinesis-block micronucleus (CBMN) assay
The CBMN assay was performed according to the stan-
dard methods as described previously [24]. For each sub-
ject, 1000 binucleated (BN) lymphocytes with well-pre-
served cytoplasm were scored blindly by the same reader.

Collection of blood samples and DNA preparation
Blood clot was immediately frozen at –80°C after collec-
tion and sent to the laboratory on dry ice. Genomic DNA 
was extracted from the blood samples by a routine phenol-
chloroform method [25].
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The mean and median MN frequencies of the VCM-
exposed workers were 3.70±1.95 (‰) and 3.00 (‰), 
respectively, with a range of 0–9 (‰). Unadjusted Pois-
son regression showed a significant difference in MN 
frequencies between the exposed group and the pooled 
control group (mean: 1.22±1.24 (‰); median: 1.00 (‰); 
range: 0–5 (‰); p < 0.05).
Based on the normal reference value of MN fre-
quency (3‰), there were 8 and 49 cases of chromo-
some damage in the controls and exposed workers, 
respectively. There was a 15.67-fold increase in the 
risk of chromosome damage in the exposed workers 
compared to that in the control group (unadjusted 
OR: 15.67; 95% CI: 6.95–35.33; p < 0.05). Among 

software. The influence of gender, age, cumulative ex-
posure dose, smoking, and alcohol consumption on the 
frequencies of MN was determined using univariate and 
multiple Poisson regression analyses. Frequency ratio 
(FR) and its 95% confidence interval (95% CI) were 
estimated using FR = eβ (e ≈ 2.71828), where β is the 
regression coefficient for a categorical variable (i.e. bi-
nary) in the Poisson model fitted to the MN frequency 
data. Thus, FR is the ratio of the mean MN frequency 
in a study group to that in the reference group. The dif-
ference of the mean micronuclei frequencies between 
the two groups was evaluated in the Poisson model and 
the difference of methylation was compared using Pear-
son’s χ2 and Fisher’s exact test. Odds ratio was estimat-
ed to quantify the relative risk of chromosome damage 
caused by VCM exposure. Statistical significance was 
defined as p < 0.05.

RESULTS

The habitual drinkers had higher mean MN frequencies 
than the non-habitual drinkers (4.36 vs. 3.38, respectively; 
p < 0.05). No significant difference was observed in the 
mean MN frequencies grouped by gender, age, cumulative 
exposure dose and smoking habit (p > 0.05; Table 2).

Table 1. Primers for MSP

Primers Sequence (5’→3’) Size (bp) Annealing
temperature (°C)

MGMT Uf TTTGTGTTTTGATGTTTGTAGGTTTTTGT 93bp 59
MGMT Ur AACTCCACACTCTTCCAAAAACAAAACA
MGMT Mf TTTCGACGTTCGTAGGTTTTCGC 81bp 65
MGMT Mr GCACTCTTCCGAAAACGAAACG
hMLH1 Uf TTTTGATGTAGATGTTTTATTAGGGTTGT 124bp 60
hMLH1 Ur ACCACCTCATCATAACTACCCACA
hMLH1 Mf ACGTAGACGTTTTATTAGGGTCGC 115bp 65
hMLH1 Mr CCTCATCGTAACTACCCGCG

Uf – unmethylation forward primer; Ur – unmethylation reverse primer; Mf – methylation forward primer; Mr – methylation reverse primer.

Two samples are shown in lanes 1–4.  
U and M represent PCR products from the unmethylated and methy-
lated alleles, respectively; W, PCR reaction with deionized water; 
P, PCR product with M.SssI-treated DNA as a positive control for 
hypermethylated DNA; and M, molecular weight markers.  
Sample 1 is unmethylated and sample 2 has a methylated allele.

Fig. 1. Methylation-specific PCR of MGMT in DNA 
from the peripheral lymphocytes
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(p < 0.05). Representative data for MSP of MGMT 
is shown in Figure 1. The basic information for the five 
methylated workers is summarized in Table 3. The five 
methylated subjects never smoked and rarely drank alco-
hol, and their exposure lasted longer than 9 years. Aber-
rant methylation was not observed in the promoter region 
of hMLH1 gene, in both the ‘chromosome damaged’ and 
‘chromosome non-damaged’ group. 

the 49 VCM-exposed workers with chromosome dam-
age, the median cumulative dose was 28 015.13 mg, as 
compared with 25 348.64 mg in the 52 exposed workers 
without chromosome damage.
Methylation of MGMT was detected in 10.2% (5/49) of 
the ‘chromosome damaged’ group, but not in the ‘chro-
mosome non-damaged’ group. There was a significant 
difference in MGMT methylation between the two groups 

Table 2. Comparison of micronuclei (MN) frequency by demographic and lifestyle factors among vinyl chloride monomer  
(VCM)-exposed workers

Variables Exposed workers
n (%)

MN (‰),
M±SD FR (95% CI)

Gender 
male 74 (73.3) 3.41±1.915 0.91 (0.69–1.20)
female 27 (26.7) 3.81±2.434 1.00

Age (years)
younger (≤ 35) 55 (54.5) 3.35±1.898 0.88 (0.69–1.12)
older (> 35) 46 (45.5) 3.72±2.248 1.00

Cumulative exposure dose
low exposure 55 (54.5) 3.58±1.969 1.12 (0.87–1.43)
high exposure 46 (45.5) 3.43±2.187 1.00

Smoking 
never 53 (52.5) 3.64±2.228 1.12 (0.86–1.47)
ever 48 (47.5) 3.38±1.875 1.00

Drinking
non-habitual + never 87 (86.1) 3.38±2.070 0.71 (0.52–0.96)*
habitual 14 (13.9) 4.36±1.865 1.00

M – mean; SD – standard deviation; FR – frequency ratio.
* Significant at p = 0.05 from multiple Poisson regression analyses.

Table 3. Basic information of MGMT-methylated workers

Subject Sex Worked years
(n) Smoking Drinking Cumulative exposure dose 

(mg)
1 female 14 no no 11.070
2 female 15 no no 21.810
3 male 9 no occasionally, a little 7.170
4 male 12 no occasionally, a little 9.580
5 male 16 no no 42.000
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occupational exposure to VCM. Furthermore, the 95-per-
centile of the controls’ MN frequencies was used to define 
the ‘chromosome damaged’ and ‘chromosome non-dam-
aged’ groups in workers exposed to VCM. We found the 
risk of chromosome damage in the VCM-exposed workers 
to be significantly elevated (48.5%, 49 out of 101) over that 
of the controls (5.67%, 8 out of 141).
Although VCM is known to cause cancer and other dise-
ases via genotoxicity, we hypothesize that long-term ex-
posure to VCM may contribute to disease development 
through epigenetic reprogramming. Indeed, p16 meth-
ylation is a frequent event in VC-associated HCCs [21]. 
In the present study, MGMT promoter methylation was 
only detected in the chromosome damaged subjects. 
However, the percentage of methylation (10%) was lower 
than those reported in other tumors, including liver car-
cinoma (12.4% to 58%) [33–44]. One explanation might 
be that workers were in the chromosome damage stage, 
which is an early effect of VCM exposure. In addition, 
the difference may be accounted for by the use of blood-
derived DNA methyl ation as a surrogate for tissue methy-
lation. Given the difficulty in obtaining DNA from some 
tissues of interest in studies in humans, the use of blood-
derived DNA as a surrogate is commonplace [45,46]. 
Thirdly, unspecific amplifications may occur especially in 
patient samples with potentially suboptimal quality and 
limited quantity of DNA. Therefore, we would like to 
stress the importance of DNA sequencing to confirm the 
obtained MSP results. Although MSP following bisulfite 
treatment is generally an extremely sensitive method to 
analyze the promoter methylation status [26], its results 
have to be confirmed by a more specific method such as 
bisulfide direct sequencing to definitely exclude unspecific 
amplifications and incomplete bisulfite treatment [47]. 
As the consumption of tobacco and alcohol has been im-
plicated in the methylation of tumor suppressor gene p15 
[48], it indicates the need to exclude the effect of smok-
ing and drinking on methylation. We found that the five 

DISCUSSION

Methylation is a major epigenetic modification in humans 
and changes in methylation patterns play an important 
role in tumorigenesis [27,28]. Abnormal methylation 
of CpG islands can efficiently repress transcription of the 
associated gene in a manner akin to mutations and dele-
tions and act as one of the ‘hits’ in Knudson’s 2-hit hypo-
the sis for tumor generation. Tumor cells exhibit global hy-
pomethylation of the genome accompanied by region-spe-
cific hypermethylation events. So far, numerous examples 
of aberrant CpG island promoter hypermethylation have 
been observed in tumor-suppressor genes, genes involved 
in cell-cell adhesion, and genes that play an important role 
in DNA repair [28].
Aberrant methylation of tumor-suppressor genes has also 
been observed in normal tissues adjacent to tumors in 
cases of OSCC, HCC, HNSCC, and gastric cancers [22, 
29–32]. In all studies, the incidence of hypermethylation 
was higher in tumor tissues than in the corresponding 
adjacent normal tissues, suggesting that aberrant DNA 
methylation is an early event of carcinogenesis, including 
hepatocarcinogenesis.
As the majority of VCM-exposed workers do not develop 
hepatoma and angiosarcoma of the liver, our study focused 
on the chromosome damage stage in the process of carci-
nogenesis following VCM exposure. The induction of MN 
represents sensitive cytogenetic end points for the detection 
of genotoxic activity of environmental mutagens and car-
cinogens and the increased frequency of MN has been ob-
served in lymphocytes of individuals occupatio nally exposed 
to VCM [8]. Our data also showed that workers exposed 
to VCM had higher frequency of MN than the unexposed 
controls. This implies that the induction of MN is a sensi-
tive cytogenetic endpoint for detecting genotoxicity caused 
by VCM exposure. The CBMN assay is the preferred 
method for measuring MN in cultured human cells, so it 
was employed in the present study. The frequency of MN 
in lymphocytes was used to assess the genetic effect of 
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by environmental exposures (benzene, persistent organic 
pollutants, lead, arsenic, and air pollution) have been ob-
served in epidemiologic studies, though the patterns are 
far from consistent [55].
In summary, aberrant promoter methylation of the DNA 
repair gene MGMT was detectable in a small number of the 
chromosome damaged workers, but not in the non-dama-
ged subjects. Although there was a significant difference 
in MGMT methylation between the two groups, these pre-
liminary findings require confirmation in larger studies. 
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